Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Testing Elastomers - Can Correlation Be Achieved Between Machines, Load Cells, Fixtures and Operators?

2001-04-30
2001-01-1443
At present, testing elastomeric parts is performed at a level dictated by the users of the testing equipment. No society or testing group has defined a formal standard of testing or a way to calibrate a testing machine. This is in part due to the difficulty involved with testing a material whose properties are in a constant state of flux. To further complicate this issue, testing equipment, testing procedures, fixtures, and a host of other variables including the operators themselves, all can have an impact on the characterization of elastomers. The work presented in this paper looks at identifying some of the variables of testing between machines, load cells, fixtures and operators. It also shows that correlation can be achieved and should be performed between companies to ensure data integrity.
Technical Paper

A New Way of Electrical/Electronic Systems Endurance Testing of Vehicles in a Real World Environment Prior to Production Launch

2001-03-05
2001-01-1101
With the increasing emphasis on Systems Engineering, there is a need to ensure that Electrical/Electronic (E/E) Systems Endurance Testing of vehicles, in a real world environment, prior to Production Launch, is performed in a manner and at a technological level that is commensurate with the high level of electronics and computers in contemporary vehicles. Additionally, validating the design and performance of individual standalone electronic systems and modules “on the bench” does not guarantee that all the permutations and combinations of real-world hardware, software, and driving conditions are taken into account. Traditional Proving Ground (PG) vehicle testing focuses mainly on powertrain durability testing, with only a simple checklist being used by the PG drivers as a reminder to cycle some of the electrical components such as the power window switches, turn signals, etc.
Technical Paper

Contact Mechanics Simulation for Hot Spots Investigation

2001-03-05
2001-01-0035
Rapid wear out of a disk brake due to phenomena commonly known as hot spots is one of various problems faced by brake manufacturers. Hot spots are localized high temperature areas generated on the frictional surface of a disk brake during braking. The non-uniform surface expansion caused by hot spots on the disk surface may cause pedal pulsation or known as thermal judder. This effect in the long run will shorten a brake's life. Numerical simulation of a disk brake requires the use of nonlinear contact mechanics approach. The simulation is computationally very expensive and difficult to perform. A computer simulation technique has been developed at the DaimlerChrysler Brake Core Group to investigate the hot spot phenomena since 1997. The technique was implemented on 3-D finite element models to simulate frictional contacts between the disk and its pads. Computer code ABAQUS is used for these analyses and computations are performed in Silicon Graphics, Origin 2000 machines.
Technical Paper

Anti-Shudder Property of Automatic Transmission Fluids - A Study by the International Lubricants Standardization and Approval Committee (ILSAC) ATF Subcommittee

2000-06-19
2000-01-1870
In recent years, the slip lock-up mechanism has been adopted widely, because of its fuel efficiency and its ability to improve NVH. This necessitates that the automatic transmission fluid (ATF) used in automatic transmissions with slip lock-up clutches requires anti-shudder performance characteristics. The test methods used to evaluate the anti-shudder performance of an ATF can be classified roughly into two types. One is specified to measure whether a μ-V slope of the ATF is positive or negative, the other is the evaluation of the shudder occurrence in the practical vehicle. The former are μ-V property tests from MERCON® V, ATF+4®, and JASO M349-98, the latter is the vehicle test from DEXRON®-III. Additionally, in the evaluation of the μ-V property, there are two tests using the modified SAE No.2 friction machine and the modified low velocity friction apparatus (LVFA).
Technical Paper

Exhaust Catalytic Converter Bench Fatigue Test Specification Based on Equivalent Damage

2000-03-06
2000-01-0787
Component bench fatigue testing is a cost-effective way to evaluate the durability of exhaust catalytic converters. A successful bench fatigue test depends on the development of a test specification. The test specification should represent the actual customer duty cycle that the component is exposed to. Based on the concept of equivalent fatigue damage, a systematic approach is presented to obtain the test specification from the acquired road load data. A method based on damage analysis is proposed to determine the effective notch factor, and an empirical relationship is presented to account for the thermal effect on the test specification. The principles and procedures of multiple block testing and constant amplitude testing are also presented.
Technical Paper

Design through Collaboration: A Supplier Partnership Paradigm

2000-03-06
2000-01-1389
New supplier / manufacturer relationship are necessary to produce products quickly, cost-effectively, and with features expected by the customer. However, the need for a new relationship is not universally accepted and endorsed. Resistance can be minimized through supplier self-assessment (such as Ford Motor Company's web-based instruments), management initiatives, and incentives. Trust and sharing are hallmarks. This strategy requires a new workplace paradigm affecting culture and people issues. Teams, extend across companies, share ideas and innovations. Decisions need to be mutually beneficial and the long-term value, for supplier and manufacturer, needs to be considered.
Technical Paper

Application of a Structural Reinforcing Material to Improve Vehicle NVH Characteristics

1999-09-28
1999-01-3223
Cavity reinforcement materials are used in the automotive industry to stiffen hollow cavities in vehicle body constructions. Typical areas of use include the engine rails, rocker panels, roof support or any other cavity in need of structural reinforcement. Use of these materials can allow for significant reductions in vehicle weight and increase structural stiffness with minimal impact to production tooling. Additional benefits can be gained by using the material as a physical barrier to the propagation of noise, water and dust. The objective of this paper is to describe a case study which implemented a new type of cavity reinforcing material to improve low frequency vehicle noise and vibration characteristics.
Technical Paper

Representation of Constrained/Unconstrained Layer Damping Treatments in FEA/SEA Vehicle System Models: A Simplified Approach

1999-05-17
1999-01-1680
In this study, a simplified approach to modeling the dynamics of damping treatments in FEA (Finite Element)/ SEA (Statistical Energy) models is presented. The basic idea is to represent multi-layered composite structures with an equivalent layer. The properties of the equivalent layer are obtained by using the RKU (Ross, Kerwin and Ungar) method. The procedure presented here does not require any special pre-processing of the finite element input file and it does not increase the number of active degrees of freedom in the model, thereby making it possible to include the effect of these treatments in large system/subsystem level models. The equivalent properties obtained from RKU analysis can also be used in the SEA system models. In this study, both unconstrained and constrained layer damping treatments applied to simple structures (e.g., flat panels) as well as production vehicle components are examined.
Technical Paper

Vibro-Acoustic Behavior of Bead-Stiffened Flat Panels: FEA, SEA, and Experimental Analysis

1999-05-17
1999-01-1698
Vibration and sound radiation characteristics of bead-stiffened panels are investigated. Rectangular panels with different bead configurations are considered. The attention is focused on various design parameters, such as orientation, depth, and periodicity, and their effects on equivalent bending stiffness, modal density, radiation efficiency and sound transmission. A combined FEA-SEA approach is used to determine the response characteristics of panels across a broad frequency range. The details of the beads are represented in fine-meshed FEA models. Based on predicted surface velocities, Rayleigh integral is evaluated numerically to calculate the sound pressure, sound power and then the radiation efficiency of beaded panels. Analytical results are confirmed by comparing them with experimental measurements. In the experiments, the modal densities of the panels are inferred from averaged mechanical conductance.
Technical Paper

Effect of Thermal Treatments and Carbon Potential on Bending Fatigue Performance of SAE 4320 Gear Steel

1999-03-01
1999-01-0603
This project investigated the effect of carburizing carbon-potential and thermal history on the bending fatigue performance of carburized SAE 4320 gear steel. Modified-Brugger cantilever bending fatigue specimens were carburized at carbon potentials of 0.60, 0.85, 1.05, and 1.25 wt. pct. carbon, and were either quenched and tempered or quenched, tempered, reheated, quenched, and tempered. The reheat treatment was designed to lower the solute carbon content in the case through the formation of transition carbides and refine the prior austenite grain size. Specimens were fatigue tested in a tension/tension cycle with a minimum to maximum stress ratio of 0.1. The bending fatigue results were correlated with case and core microstructures, hardness profiles, residual stress profiles, retained austenite profiles, and component distortion.
Technical Paper

New Methods for Emission Analyzer Calibrations

1999-03-01
1999-01-0153
Traditionally, vehicle emission testing has used non-intelligent analyzers to meet government-regulated standards. Typically, these instruments would provide a 0 to 5-volt signal to a central test cell computer which would then handle all calibrations including analyzer linearization, zero and span corrections, stability checks, time delays, and sample readings. Modern gas analyzers now contain intelligence within each individual analyzer; this has caused the calibration methods to change dramatically. New methods were developed in the bench control system to take advantage of the intelligence of the analyzers by creating a distributed control architecture. The zeroing, spanning, and linearization methods are quite different from the previous protocols. The results, however, will provide more accurate reading to be used in calculating vehicle emissions.
X